明知鸡娃是内卷,也不得不将娃鸡到底

小长假闲来无事,几位老乡一起聚餐,席间聊起孩子的学习,强哥表示自己近三年的主要任务就是鸡娃,目标是用两到三年的时间,把儿子送进一所好大学。

强哥的儿子去年刚以优异的成绩被巴蜀中学录取,这基本上是重庆最好的中学。强哥是全国TOP10高校的本硕毕业,在鸡娃方面一直亲历亲为,效果也很不错。

一同吃饭的小刘问了一句:网上都说鸡娃是内卷,既然是内卷何必要参加?

小刘才刚结婚,还没有孩子,每次谈起孩子学习的话题,小刘都是快乐教育的铁杆支持者,总是说没必要让孩子太累。在座的其余几个人以前都经历过没有孩子的阶段,对小刘的这种心态很了解,通常都是笑而不语。一般来说,有了孩子之后,人的心态会发生很大变化,对待孩子学习的态度就是其中一种,许多人都会从佛系逐渐转为焦虑,最后变成铁杆鸡娃派。

强哥或许是喝多了点,怼了一句:都知道鸡娃是内卷,但内卷就不参加了?内卷的过程中,谁先退出谁SB。有一组数据你知道不?有一半的孩子上不了高中,只能读职业学校;有大约一半的高中生上不了大学;在重庆等地,想上双一流大学,得是高三人群中的前2%。在别人都鸡娃的时候,你不参加,是不想让孩子上名牌大学了吧?关于鸡娃,哥想送你4个字——

所谓内卷,是指付出了更大的代价,却没有得到更多的东西。典型内卷的发生过程是:

假设某个小岛上每年产出的大米刚够所有人吃,大米价格是每斤1元钱,有一天A君突然提出用2元钱卖大米,有多少买多少,如果其他人不跟着用2元钱买大米,就只能饿肚子。最后岛上的大米价格就会变成每斤2元。

同样是一斤大米,过去只要花1元,现在要花2元,这就是内卷。

内卷的本质是博弈,博弈的结果是纳什均衡,即每个参与人的策略都是对其他参与人策略的最优反应,通俗的来说,就是对聪明人来说,你的应对方案要取决于别人的应对方案。

一个典型的例子是囚徒困境:甲和乙两名罪犯被警察抓住了,如果每个人都拒不交代,那么两个人都各判1年;如果两个人都坦白,那么两个人都各判3年;如果一个人坦白另一个人拒不交代,那么坦白的无罪释放,拒不交代的被判10年。

如果站在上帝视角,似乎只要两个人都拒不交代,就可以各自都只判1年,整体效益最大,但整体效益不代表个人效益,所以博弈的结果也并非如此。

站在甲的角度上考虑,乙只有坦白或拒不交代两种可能,如果乙坦白了,那么甲只有坦白才能判的最少;如果乙拒不交代,那么甲只要坦白就能无罪释放。不管哪种情况,甲的最优解就是坦白。对乙来说,最优解同样也是坦白。

所以在囚徒困境中,甲和乙只要足够聪明,最终都会选择坦白。纳什均衡的最终结果是:一旦你改变选择,就会利益受损。

鸡娃的博弈结果也一样,如果别人都选择鸡娃,而你选择快乐教育,结果就是你的孩子上不了好大学。所以,对明智的家长来说,明知鸡娃是内卷、是坑,也得义无反顾地跳下去。

小刘被怼了之后,我接着问强哥:你是怎么鸡数学的?

强哥的回答很简单:刷题,有针对性的刷题,题海战术才最有效。

刷题只是手段,目的是为了提高分数。刷多少题并不重要,提高分数才最重要。所以必须有针对性的刷题。

强哥说在初中时,每次儿子刷完题后,自己总要帮着对答案。他把错题分三种:

第一类是孩子已经掌握了知识点,但还是出错的题目。他会让孩子重新做一遍,并写出详细过程,看看是因为粗心大意出错,还是因为知识点掌握不够牢靠而出错,然后有针对性地查缺补漏,并寻找类似的题目多刷几道。

第二类是孩子没有掌握知识点而出错。他会帮孩子重新回顾复习知识点,然后从课本上的习题开始做起,逐渐增加难度,多刷几道类似的题进行巩固。

第三类是不会做综合了多个知识点的大题。这类题目没有捷径可走,只能把历年中考和单招的压轴题找出来,一道一道逐个刷,最后期待能融会贯通。

数学的本质类似于下棋,都是在规定了规则之后,不断推导。下棋讲究的是熟能生巧,数学也一样。没有人可以只看几遍规则就下好象棋,如果不是天才,想学好数学离不开大量刷题。

最后给出一道数学题,适合初中二年级及以上的孩子:

思考题(3星半难度):

n是一个正整数,自然数2020在n进制下是一个三位数ABC,且A+B+C=4。问满足条件的n有多少个?

THE END
喜欢就支持一下吧
点赞0赞赏
分享